Seismic Blending and Deblending in 3D
نویسنده
چکیده
منابع مشابه
Imaging blended vertical seismic profiling data using full-wavefield migration in the common-receiver domain
For vertical-seismic-profiling (VSP) measurements, the use of blended acquisition, with time-overlapping shot records, can greatly reduce the downtime and, thereby, provide large cost savings. For directly imaging blended VSP measurements, we have used full-wavefield migration (FWM). FWM is an inversion-based imaging scheme that enables us to use any kind of complex source wavefield to estimate...
متن کاملOn the relation between seismic interferometry and the simultaneoussource method
In seismic interferometry the response to a virtual source is created from responses to sequential transient or simultaneous noise sources. Most methods use crosscorrelation, but recently seismic interferometry by multidimensional deconvolution (MDD) has been proposed as well. In the simultaneous-source method (also known as blended acquisition), overlapping responses to sources with small time...
متن کاملDeblending by direct inversion
Deblending of simultaneous-source data is usually considered to be an underdetermined inverse problem, which can be solved by an iterative procedure, assuming additional constraints like sparsity and coherency. By exploiting the fact that seismic data are spatially band-limited, deblending of densely sampled sources can be carried out as a direct inversion process without imposing these constra...
متن کامل3D and 4D Seismic Data Integration in Static and Dynamic Reservoir Modeling: A Review
Reservoir modeling is the process of generating numerical representations of reservoir conditions and properties on the basis of geological, geophysical, and engineering data measured on the Earth’s surface or in depth at a limited number of borehole locations. Therefore, reservoir modeling requires an incorporation of the data from a variety of sources, along with an integration of knowledge a...
متن کاملOptimizing design of 3D seismic acquisition by CRS trace interpolation
Land seismic data acquisition in most of cases suffers from obstacles in fields which deviates geometry of the real acquired data from what was designed. These obstacles will cause gaps, narrow azimuth and offset limitation in the data. These shortcomings, not only prevents regular trace distribution in bins, but also distorts the subsurface image by reducing illumination of the target formatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016